Growth and Decay

Depreciation

I buy a car for £20000.

It depreciates at a rate of 4% per

What will it be worth after 3 years?

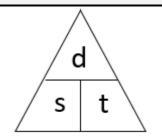
Initial amount= £20000 Depreciation rate = 4% Multiplier is $\times 0.96$ It depreciated for 3 years

 $20000 \times 0.96^3 = £17694$

Compound Interest

Initial amount x (1 + the rate of interest) years

 $A(1+r)^n$


You save £2000 in a savings account for 4 years.

The interest rate is 0.6% per annum.

Initial amount= 2000 Interest rate = 0.6% Multiplier is $\times 1.006$ It is in the bank for 4 years

> 2000 x 1.006⁴ =£2048.43

Speed, Distance, Time

$$speed = \frac{distance}{time}$$

$$time = \frac{distance}{speed}$$
 $distance = speed \times time$

Use the formulas to convert between compound measures

Speed	Distance	Time
2m/s	10m	5s
5m/s	24m	4.8s
0.2km/s	50km	250s
5km/h	10km	7200s

Compound Measures

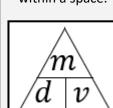
The distance from Fulbeck to Ganby is 10 miles. The distance from Ganby to Horton is 18 miles.

Raksha is going to drive from Fulbeck to Ganby. Then she will drive from Ganby to Horton.

Raksha leaves Fulbeck at 10 00.

She drives from Fulbeck to Ganby at an average speed of 40mph.

Raksha wants to get to Horton at 10 35.


Work out the average speed Raksha must drive at from Ganby to Horton.

Use the rows for speed, distance and time, and the columns for each leg of the journey:

	$\mathbf{F} \rightarrow \mathbf{G}$	$G \rightarrow H$
Speed	40 mph	54 mph
Distance	10 miles	18 miles
Time	1/4 hr	1/3 hrs

Density, Mass and Volume

Density gives us a measure of how tightly packed matter is within a space.

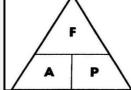
massdensity = volume

massvolume = density

 $mass = density \times volume$

Again, the unit of g/cm3 allows you to work out the formula for density if you forget.

The density of a rock is 2.3 g/cm³. Work out the mass of a piece of this rock with a volume of 20 cm³.


Intuitively, if there is 2.3 g for each cm3, then for 20cm³, mass must be $2.3 \times 20 = 46 \text{ g}$

Compound Measures

Pressure, Force and Area

Multiplicative Reasoning

Unit 11:

Force Pressure = Area

$$Area = \frac{Force}{Pressure}$$

 $Force = Pressure \times Area$

What pressure does a chicken weighing 80N with feet area of 0.1m2 put on the ground

$$\frac{80}{0.1m^2} = 8N/m^2$$