Sampling

When you are investigating a hypothesis, the population is the whole group that you are interested in.

> A population is everything or everybody that could possibly be involved in an investigation

> > **Stratified**

Sampling

A population may divide into groups such as age range These groups are called strata.

In a stratified sample, the number of people taken from each group is proportional to the group size.

Weight (w	Frequenc
kg)	у
$50 \le w \le 60$	7

80 ≤ w < 90 2

 $\frac{7}{20} \times 300 = 105$

Capture Recapture

Capture-Recapture is a technique that can be used to estimate the total population.

$$\frac{M}{V} = \frac{R}{T}$$

- N = total population
- R = number "recaptured"
- T = total capture on 2nd visit

Clive wants to estimate the number of bees in a beehive. Clive catches 50 bees from the beehive

He marks each bee with a dye.

T = 40

R = 8

N = ?

The next day, Clive catches 40 bees from the beehive. 8 of these bees have been marked with the dye.

(i) Work out an estimate for the number of bees in the beehive.

2000 = 8nM = 50

250 = n

A Cumulative Frequency table shows a running total of the frequencies

Mark	Frequency	Cumulative Frequency
1-10	3	3
11-20	6	3 + 6 = 9
21-30	11	9 + 11 = 20
31-40	13	20 + 13 = 33
41-50	18	33 + 18 = <mark>51</mark>

A cumulative frequency table shows how many data values Are less than or equal to the upper class boundary of each data class

The upper class boundary is the highest possible value in each class.

Cumulative Frequency

Drawing a Cumulative Frequency Graph

Mark	Frequency	Cumulative Frequency	ateged
1-10	3	3	
11-20	6	9	R
21-30	11	20	<u></u>
31-40	13	33	00 00 00 00 00 00 00 00 00 00 00 00 00
41-50	18	51	0 0 0
51-60	24	75	9 9
61-70	12	87	
71-80	6	93	8
81-90	3	96	2
91-100	2	98	0 10 20 30 40 50 Mark 0 70 80 90 100

Steps:

- 1) Start from 0
- 2) Plot using end points
- 3) Join using a smooth curve

Averages

1 1 3 5 7 9 11 14 16 19 19 20 21

n = 13

Median = $\frac{13+1}{2} = \frac{14}{2} = 7th \ value = 11$

 $LQ = \frac{13+1}{4} = \frac{14}{4} = 3.5th \ value = 4$

 $UQ = 3.5 \times 3 = 10.5th \ value = 19$

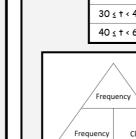
Median formula $=\frac{n+1}{2}$

smallest

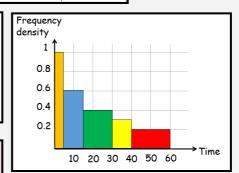
Lower Quartile formula

 $= LQ \times 3$

Upper Quartile


Further Statistics

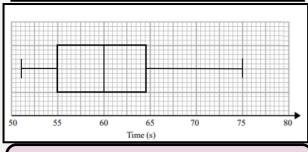
biggest


Unit 14:

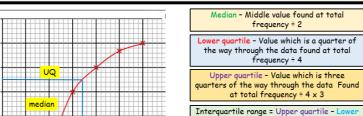
Drawing a histogram

Time, t, in minutes	Frequency density	Frequency
0 <u><</u> † < 5	1	5
5 <u><</u> † < 15	0.6	6
15 ≤ † < 30	0.4	6
30 ≤ † < 40	0.3	3
40 <u><</u> † < 60	0.2	4

This is the formula triangle for a histogram



Interpreting a Histogram


The histogram shows the times a sample of students spent on the internet one evening. (a) Copy and complete the frequency table,
(b) Estimate how many students spent longer than 50 minutes on the internet. Time, t, minutes $0 \le t < 20$ $20 \le t < 30$ $30 \le t < 35$ $35 \le t < 45$ $45 \le t < 60$ Frequency 0.1 x 20 = 2 0.8 x 10 = 8 2.8 x 5 = 14 1.5 x 10 = 15 0.4 x 15 = 6 50 Minutes or more The area of the histogram represents Area 50 ≤ t < 60 = 0.4 x 10 = 4 4 students spent longer than 50 minutes

Drawing a box plot

Draw a box plot for this information

Box Plots + CF Diagrams

Interquartile range = Upper quartile - L

LQ Median UQ

way through the data

Histograms