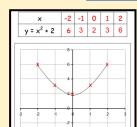
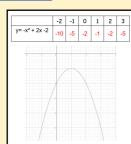

Plotting Quadratic Graphs


Quadratic Graphs


Quadratic graphs are curved and symmetrical

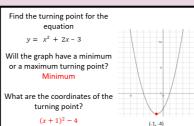
When you square a negative number the answer is <u>always</u> positive

Finding the roots of a Quadratic Graph

To find the roots of a graph we <u>factorise</u>

Find the roots for this equation

$$x^2 + 3x = 0$$


$$x(x+3) = 0$$

$$x = 0 \text{ or } x = -3$$

Steps:

- 1) Set the equation equal to 0
- 2) Factorise
- 3) Solve for x

Finding the turning points of a Quadratic Graph

To find a maximum or minimum point

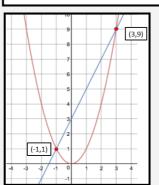
you complete

the square

Solving simultaneous equations by using the graph

x = -1, y = 1 orx = 3, y = 9

The diagram shows the graphs of


$$y = x$$

$$y = 2x + 3$$

Use the diagram to solve this pair of simultaneous equations:

$$y = x^2$$

$$y = 2x + 3$$

The points where the graphs intersect are the solutions of the simultaneous equations.

Simultaneous Equations

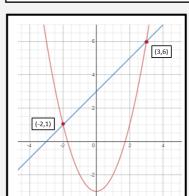
Solving simultaneous equations by plotting the graphs

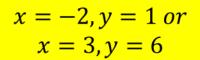
Sketch the graph of
$$y = x^2 - 3$$

x	-3	-2	-1	0	1	2	3
$y = x^2 - 3$	6	1	-2	-3	-2	1	6

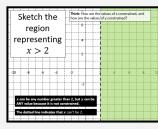
By drawing a suitable line on your graph, solve this pair of simultaneous equations:

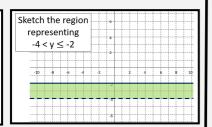
$$y = x^2 - 3$$

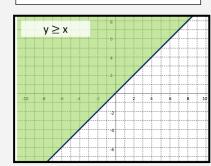

$$y = x + 3$$


x	-3	-2	-1	0	1	2	3
y = x + 3	0	1	2	3	4	5	6

The points where the graphs intersect are the solutions of the simultaneous equations.


Use a table of values to help you plot the graphs more


accurately


Representing graphical inequalities

If the line is a boundary for values that <u>are</u> included, the line must be drawn with a <u>solid line</u>

If the line is a boundary for values that <u>are not</u> included, the line must be drawn with a <u>dashed line</u>

Graphical Inequality regions

Solving graphical inequalities

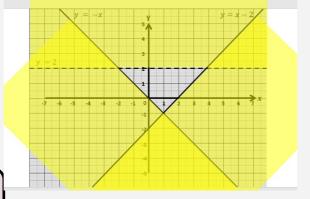
tions and Graphs

Unit 15: Equa-

On the grid, shade the region whose coordinates satisfy the inequalities:

 $y \ge -x$

y < 2


 $y \ge x - 2$

 Draw the lines for the inequalities, treating them as equations (remember solid or dashed lines!)

Choose a point on either side of the line to test if the inequality is true or not

. Shade the region that satisfies each inequality

The solution will be the unshaded region

